Tuesday, July 29, 2008

PCR primers sequences

Human papillomavirus (HPV) capture probe and PCR primers sequences.
6 capture CAG AAT TGG TGT ATG TGG AAG A(N152)
11 capture TAA TCT GAA TTA GTG TAT GTA GCA GAT TTA GAC A(N152)
16 capture GTA GTT TCT GAA GTA GAT ATG G(N152)
18 capture TGG TAG CAT CAT ATT GCC CAG G(N152)
26 capture ATC AGA TGG TTT AAA TGG AGT GGA TGC(N152)
31 capture TAC TAC TTT TAA ATG TAG TAT CAC(N152)
35 capture ACT GTC ACT AGA AGA CAC AGC AGA ACA CA(N152)
40 capture GGG GGA CTG TGT GGC ACC A(N152)
42 capture AGC AGC TGT ATA TGT ATC ACC AGA TGT TGC AGT GGC TCA(N152)
45 capture CTT AGT AGG GTC ATA TGT ACT TGG C(N152)
51 capture TTG GGG AAA CCG CAG CAG TGG CAG GGC TA(N152)
52 capture TAT GTG CTT TCC TTT TTA ACC T(N152)
54 capture GTC AGA ATT ATT AAA GCT ATC CTG CG(N152)
56 capture TTT TCG TGC ATC ATA TTT ACT TA(N152)
58 capture GTA CCT TCC TTA GTT ACT TCA G(N152)
59 capture CTG GTA GGT GTG TAT ACA TTA G(N152)
66 capture CAC GGG CAT CAT ATT TAG TTA A(N152)
68 capture TTA AAT TTA TTA GGA TCA TAA ATA TTT GGT A(N152)
82 capture AAT GTT TGT GCA ACA GAT TGA GTA ACA GCT GTG(N152)
83 capture GTT AGA GGC TGT GTA TTC ATT AGC(N152)
84 capture GGT TTA TAT TCT GAT TCG GTG T(N152)
globin capture AGC AAT AGA TGG CTC TGC CC(N152)
globin primer GAA GAG CCA AGG ACA GGT AC
globin rev primer BIOTIN CAA CTT CAT CCA CGT TCA CC
HMB01 rev primer BIOTIN GCG ACC CAA TGC AAA TTG GT
PGMY09F primer BIOTIN CGT CCC AAA GGA AAC TGA TC
PGMY09G primer BIOTIN CGA CCT AAA GGA AAC TGA TC
PGMY09H primer BIOTIN CGT CCA AAA GGA AAC TGA TC
PGMY09I primer BIOTIN GCC AAG GGG AAA CTG ATC
PGMY09J primer BIOTIN CGT CCC AAA GGA TAC TGA TC
PGMY09K primer BIOTIN CGT CCA AGG GGA TAC TGA TC
PGMY09L primer BIOTIN CGA CCT AAA GGG AAT TGA TC
PGMY09M primer BIOTIN CGA CCT AGT GGA AAT TGA TC
PGMY09N primer BIOTIN CGA CCA AGG GGA TAT TGA TC
PGMY09P primer BIOTIN GCC CAA CGG AAA CTG ATC
PGMY09Q primer BIOTIN CGA CCC AAG GGA AAC TGG TC
PGMY09R primer BIOTIN CGT CCT AAA GGA AAC TGG TC
PGMY11A primer GCA CAG GGA CAT AAC AAT GG
PGMY11B primer GCG CAG GGC CAC AAT AAT GG
PGMY11C primer GCA CAG GGA CAT AAT AAT GG
PGMY11D primer GCC CAG GGC CAC AAC AAT GG
PGMY11F primer GCT CAG GGT TTA AAC AAT GG


Bioelectronic DNA detection involves forming an electronic circuit mediated by nucleic acid hybridization and it serves as the basis for a DNA detection system called eSensor™ [1-4]. This system uses low-density DNA chips containing electrodes coated with DNA capture probes. Target DNA present in the sample hybridizes specifically both to capture probes and ferrocene labeled signal probes in solution thereby generating an electric current. Currente Sensor DNA chips contain as many as 36 electrodes for simultaneous detection of multiple pathogens from a single sample.

Many pathogens cause both acute and chronic disease at relatively low copy number and may be difficult or impossible to propagate in culture. Thus, most pathogen detection systems rely on nucleic acid amplification by using polymerase chain reaction (PCR). One highly effective amplification strategy targets conserved sequences among the family of organisms of interest. Such broad-range PCR strategies have been used to identify and characterize several known and previously uncharacterized bacteria [5,6] and viruses [7,8]. In order to maximize the utility of these effective pathogen nucleic acid amplification systems, amplification needs to be coupled with rapid, sensitive, and specific detection. Bioelectronic DNA detection by use of the eSensor chip might fulfill this need.

Human papillomaviruses (HPV) serve as an ideal model system for determining the efficiency and feasibility of eSensor DNA detection technology since there are at least 30 distinct genital HPV types that can be effectively amplified with broad-range consensus PCR primers. We designed two eSensor chips, each containing 14 probes specific for the conserved L1 region of the HPV genome. We evaluated clinical cervical cytology samples known to contain one or more HPV types. The eSensor DNA detection platform successfully detected the correct HPV type in most of these clinical samples, demonstrating that the system provides a rapid, sensitive, specific, and economical approach for multiple-pathogen detection and identification from a single sample.Background We used human papillomaviruses (HPV) as a model system to evaluate the utility of a nucleic acid, hybridization-based bioelectronic DNA detection platform (eSensor) in identifying multiple pathogens.