Monday, August 2, 2010

Phenoxyacetic acid, amino acids, antibacterial, antifungal and anthelminitic.

Phenoxyacetic acid is among the most vital moieties which are associate with potent antidiabetic (Rival et al 2004), antimycobacterial (Yar et al 2007),diuretic (Lebedev et al 1985, Woltersdorf et al 1976, Bicking et al 1976), anti-inflammatory (Kunsch et al 2005, Shokol et al 2005), antibiotic (Grardin et al 1995), anti-obesity (Kiso et al 1999), diagnostic (Ohmomo et al 1989), inhibition of platelet aggregation (Meanwell et al 1993, Seiler et al 1994) activities. The review of literature has suggested that incorporation of amino acids and peptides into aromatic and heterocyclic congeners have resulted in compounds with potent bioactivities.

Introducing an amino acid or peptide into aromatic compounds can increase the potency, decrease the toxicity and prolong its action. Among aromatics, phenolic compounds have wide range of activities. Further phenoxylation the resulting compound phenoxyacetic acid is obtained, which is well known for their biological potential. Thus keeping in view the biological potency of phenoxyacetic acids as well as taking advantage of biodegradability and biocompatibility of a novel series of substituted phenoxyacetic acid derivatives of amino acids and peptides have been synthesized with an anticipation to get potent agents with


Bioelectronic DNA detection involves forming an electronic circuit mediated by nucleic acid hybridization and it serves as the basis for a DNA detection system called eSensor™ [1-4]. This system uses low-density DNA chips containing electrodes coated with DNA capture probes. Target DNA present in the sample hybridizes specifically both to capture probes and ferrocene labeled signal probes in solution thereby generating an electric current. Currente Sensor DNA chips contain as many as 36 electrodes for simultaneous detection of multiple pathogens from a single sample.

Many pathogens cause both acute and chronic disease at relatively low copy number and may be difficult or impossible to propagate in culture. Thus, most pathogen detection systems rely on nucleic acid amplification by using polymerase chain reaction (PCR). One highly effective amplification strategy targets conserved sequences among the family of organisms of interest. Such broad-range PCR strategies have been used to identify and characterize several known and previously uncharacterized bacteria [5,6] and viruses [7,8]. In order to maximize the utility of these effective pathogen nucleic acid amplification systems, amplification needs to be coupled with rapid, sensitive, and specific detection. Bioelectronic DNA detection by use of the eSensor chip might fulfill this need.

Human papillomaviruses (HPV) serve as an ideal model system for determining the efficiency and feasibility of eSensor DNA detection technology since there are at least 30 distinct genital HPV types that can be effectively amplified with broad-range consensus PCR primers. We designed two eSensor chips, each containing 14 probes specific for the conserved L1 region of the HPV genome. We evaluated clinical cervical cytology samples known to contain one or more HPV types. The eSensor DNA detection platform successfully detected the correct HPV type in most of these clinical samples, demonstrating that the system provides a rapid, sensitive, specific, and economical approach for multiple-pathogen detection and identification from a single sample.Background We used human papillomaviruses (HPV) as a model system to evaluate the utility of a nucleic acid, hybridization-based bioelectronic DNA detection platform (eSensor) in identifying multiple pathogens.