Wednesday, February 29, 2012

Promega’s DNA isolation systems

The majority of Promega’s DNA isolation systems for genomic, plasmid and PCR product purification are based on purification by silica. Regardless of the method used to create a cleared lysate, the DNA of interest can be isolated by virtue of its ability to bind silica in the presence of high concentrations of chaotropic salts (Chen and Thomas, 1980; Marko et al. 1982; Boom et al. 1990). These salts are then removed with an alcohol-based wash and the DNA eluted in a low-ionic-strength solution such as TE buffer or water. The binding of DNA to silica seems to be driven by dehydration and hydrogen bond formation, which competes against weak electrostatic repulsion (Melzak et al. 1996). Hence, a high concentration of salt will help drive DNA adsorption onto silica, and a low concentration will release the DNA.

Promega has sold and supported silica-based DNA purification systems for nearly two decades. The first technology available was silica resin, exemplified by the Wizard® Plus Minipreps DNA Purification System. The protocol for purification by silica resin involves combining the cleared lysate with a resin slurry and using vacuum filtration to wash the bound DNA, followed by centrifugation to elute the purified DNA.


Bioelectronic DNA detection involves forming an electronic circuit mediated by nucleic acid hybridization and it serves as the basis for a DNA detection system called eSensor™ [1-4]. This system uses low-density DNA chips containing electrodes coated with DNA capture probes. Target DNA present in the sample hybridizes specifically both to capture probes and ferrocene labeled signal probes in solution thereby generating an electric current. Currente Sensor DNA chips contain as many as 36 electrodes for simultaneous detection of multiple pathogens from a single sample.

Many pathogens cause both acute and chronic disease at relatively low copy number and may be difficult or impossible to propagate in culture. Thus, most pathogen detection systems rely on nucleic acid amplification by using polymerase chain reaction (PCR). One highly effective amplification strategy targets conserved sequences among the family of organisms of interest. Such broad-range PCR strategies have been used to identify and characterize several known and previously uncharacterized bacteria [5,6] and viruses [7,8]. In order to maximize the utility of these effective pathogen nucleic acid amplification systems, amplification needs to be coupled with rapid, sensitive, and specific detection. Bioelectronic DNA detection by use of the eSensor chip might fulfill this need.

Human papillomaviruses (HPV) serve as an ideal model system for determining the efficiency and feasibility of eSensor DNA detection technology since there are at least 30 distinct genital HPV types that can be effectively amplified with broad-range consensus PCR primers. We designed two eSensor chips, each containing 14 probes specific for the conserved L1 region of the HPV genome. We evaluated clinical cervical cytology samples known to contain one or more HPV types. The eSensor DNA detection platform successfully detected the correct HPV type in most of these clinical samples, demonstrating that the system provides a rapid, sensitive, specific, and economical approach for multiple-pathogen detection and identification from a single sample.Background We used human papillomaviruses (HPV) as a model system to evaluate the utility of a nucleic acid, hybridization-based bioelectronic DNA detection platform (eSensor) in identifying multiple pathogens.