Monday, February 6, 2012

Tramadol | analgesic | pain | cyclooxygenase

Tramadol | analgesic | pain | cyclooxygenase

pain is defined by the International Association for the Study of Pain (IASP) as "an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage".Pain has now been equated to a “fifth vital sign” highlighting the significance of pain management in patient care. Tramadol is a centrally acting analgesic, structurally related to codeine and morphine .It is effectively used to treat moderate-to-severe acute and chronic pain in diverse conditions. Tramadol is placed on the second step of WHO analgesic ladder and in contrast to traditional opioids, exerts its analgesic activity, a dual mechanism of action inhibiting transmission as well as perception of pain. Tramadol is more suitable than NSAIDs and coxibs for patient with GI, renal and cardiovascular problems. Combined with low dependence/abuse potential, it has proven to be of significant advantage over other agents, especially in the elderly.


Bioelectronic DNA detection involves forming an electronic circuit mediated by nucleic acid hybridization and it serves as the basis for a DNA detection system called eSensor™ [1-4]. This system uses low-density DNA chips containing electrodes coated with DNA capture probes. Target DNA present in the sample hybridizes specifically both to capture probes and ferrocene labeled signal probes in solution thereby generating an electric current. Currente Sensor DNA chips contain as many as 36 electrodes for simultaneous detection of multiple pathogens from a single sample.

Many pathogens cause both acute and chronic disease at relatively low copy number and may be difficult or impossible to propagate in culture. Thus, most pathogen detection systems rely on nucleic acid amplification by using polymerase chain reaction (PCR). One highly effective amplification strategy targets conserved sequences among the family of organisms of interest. Such broad-range PCR strategies have been used to identify and characterize several known and previously uncharacterized bacteria [5,6] and viruses [7,8]. In order to maximize the utility of these effective pathogen nucleic acid amplification systems, amplification needs to be coupled with rapid, sensitive, and specific detection. Bioelectronic DNA detection by use of the eSensor chip might fulfill this need.

Human papillomaviruses (HPV) serve as an ideal model system for determining the efficiency and feasibility of eSensor DNA detection technology since there are at least 30 distinct genital HPV types that can be effectively amplified with broad-range consensus PCR primers. We designed two eSensor chips, each containing 14 probes specific for the conserved L1 region of the HPV genome. We evaluated clinical cervical cytology samples known to contain one or more HPV types. The eSensor DNA detection platform successfully detected the correct HPV type in most of these clinical samples, demonstrating that the system provides a rapid, sensitive, specific, and economical approach for multiple-pathogen detection and identification from a single sample.Background We used human papillomaviruses (HPV) as a model system to evaluate the utility of a nucleic acid, hybridization-based bioelectronic DNA detection platform (eSensor) in identifying multiple pathogens.